公众科普
中国科学院云南天文台抚仙湖太阳观测和研究基地博士生杨丽平和导师闫晓理研究员等人利用一米新真空太阳望远镜(NVST)和太阳动力学天文台(Solar Dynamic Observatory)所获得的高时空分辨率和多波段观测数据研究了两个相邻太阳暗条之间的相互作用过程,并最终导致暗条的连续部分爆发。相关研究成果于近期发表在国际天文学期刊《天体物理学报》(The Astrophysical Journal)上。
02-13
头条
突出科普特色,推动工作创新。围绕“全国科技周”“全国科普日”等重要节点,开展“以核济世护健康”等特色活动;每年定期举办“身在辐中,安全为重”辐射安全、“核你一起,医学解密”科普竞赛、“安知非辐”科技夏令营等特色活动;以院士为首高层次专家开展科普讲座,通过放射医学、辐射防护、血液学、临床医学等多学科知识解读核科学技术的应用。
2022-06-21
辐射安全
放射性核素治疗是将放射性核素或其标记物靶向运送到病变组织或细胞,或病变组织与细胞能主动摄取放射性药物,使放射性核素在病变部位大量浓聚,照射剂量主要集中于病灶内,利用核素衰变发出的Y或β射线,产生电离辐射生物效应,直接或间接作用于生物大分子,如核酸和蛋白质等,使其化学键断裂,导致其分子结构和功能的改变,起到抑制或杀伤病变细胞的作用,达到治疗的目的。
2022-06-15
放射性核素
2018年问世的全球首创Total-body PET/CT(uEXPLORER)拥有长达194cm的超长轴向视野、40倍超高系统灵敏度的提升、2.9mm超高清NEMA空间分辨率等突破性系统性能。
2022-06-11
PET/CT
来自乌特勒支大学引力和亚原子物理研究所(GRASP)的另一位第一作者Peter T. H. Pang补充道:“我们发现,来自粒子加速器的金离子碰撞的约束显示出跟天体物理学观测的显著一致性,尽管它们是用完全不同的方法获得的。”
2022-06-10
核物理原子核
致辞结束后,举行了“核安全科普教育基地”授牌仪式,标志着宁德核电率先在省内高校设立了“核安全科普教育基地”,拓宽了核科普宣传渠道,促进了核安全科普工作的开展,为省内校企合作提供了良好示范。
2022-06-08
核安全技术
北京正负电子对撞机上的北京谱仪III(BESIII)实验实现了一种全新方法,为研究物质和反物质之间的差异提供了极其灵敏的探针。6月2日,相关研究成果刊发于《自然》杂志。
2022-06-02
粒子物理
但它们也可以以等离子射流的形式发射物质:一种从星系中心喷出具有巨大能量的等离子束,等离子射流可以延伸到数十万光年的遥远太空。当这种强烈的辐射被发射出来时,黑洞仍然是隐藏的,因为它附近的光线被强烈地弯曲,即事件视界,导致了黑洞“阴影”的出现。
2022-06-01
宇宙射线伽马射线
之后,第一批恒星诞生,宇宙的黎明来临。恒星发出的紫外线激发电子跃迁,使氢原子吸收的21厘米射电波比它们发射的更多。由于这种现象,我们能从地球上看到的电磁波强度会在某个频率下降,它标志着宇宙中第一批恒星点亮的时刻。
2022-05-30
宇宙射线X射线
量子相干性是量子力学中最基础的本质特性。对于单粒子量子系统,量子相干性体现在系统处于计算基矢的叠加状态;而对于多粒子量子系统,如果这些粒子是全同粒子,即使没有任何一个粒子处于相干叠加状态,整个量子系统也可以存在相干性。这种相干性是由于全同粒子之间波函数的空间不可分辨性导致的。
2022-05-30
粒子物理
近日,中国科学院近代物理研究所与中山大学、兰州大学、广西师范大学、中科院理论物理研究所、同济大学、俄罗斯联合核子研究所合作,合成了新核素钍-207,并发现了Z>82, N<126核区α衰变能的奇偶效应。
2022-05-30
放射性核素
发表在《物理评论快报》上的一项新研究报告说,一些世界上最强大的粒子加速器已经帮助研究人员从轰击地球大气层的高能宇宙射线的碰撞中得出了关于长期理论磁单极子存在的新的领先限制。
2022-05-27
宇宙射线
不过,为了研究宇宙的起源、物质的构成,人类建造了粒子加速器和粒子对撞机,把极小的粒子加速到非常快的速度,接近光速,然后让它们迎头相撞,粒子分崩离析,飞向四面八方。收集这些四散而逃的粒子,分析它们的行为,就可以反推出对撞粒子的性质了。
2022-05-26
粒子物理
许多中微子物理学家觉得自己就像在迷宫中前行,不确定要往哪里走,也不知道哪条线索可能会把他们引入歧途,多年来,对中微子的测量结果相互矛盾使一些物理学家提出,宇宙中存在一个充斥着不可见粒子的“暗区”,可以同时解释暗物质、宇宙膨胀和其他令人困惑的谜团。
2022-05-26
中微子
宇宙近红外星系外深部勘测(CANDELS)是哈勃望远镜有史以来最大的项目之一,旨在研究星系随时间的发展。虽然哈勃望远镜花了近21天的时间。
2022-05-25
宇宙射线
近期,中国科学院紫金山天文台“太阳高能及相关物理过程”研究团组特别研究助理、博士卢磊等人基于SDO的极紫外成像、RHESSI的X射线成像以及云南天文台的射电频谱观测,分析并报道了耀斑电流片中磁岛及次级磁岛形成的详细物理过程。研究结果显示,随着耀斑电流片被不断地拉伸,耀斑电流片出现了撕裂模不稳定性,最终导致磁岛及次级磁岛的产生。
2022-05-24
宇宙射线
阅读排行榜