等待被磁场激活的拓扑量子金属中的电子。一旦它们开始移动,它们就会沿着螺旋线向上移动,这与之前提出的电子在二维平面中绕圈移动的图片形成鲜明对比。这创造了一种特殊的效果,它是很有前途的拓扑量子现象的基础。
来自卓越集群 ct.qmat——量子物质的复杂性和拓扑结构的科学家们对电子在强磁场中的行为有了新的理解。他们的研究结果解释了三维材料中电流的测量,这种测量表明了量子霍尔效应——一种目前只与二维金属有关的现象。这种新的3D效应可以成为拓扑量子现象的基础,人们认为拓扑量子现象特别强大,因此是极其强大的量子技术的有望候选者。这些研究结果刚刚发表在科学杂志《自然通讯》上。
Tobias Meng 博士和 Johannes Gooth 博士是维尔茨堡-德累斯顿卓越集群 ct.qmat 的早期职业研究人员,该集群自 2019 年以来研究拓扑量子材料。他们很难相信最近发表在《自然》杂志上的一项发现,该发现声称拓扑金属ZrTe5 (ZrTe5)中的电子只在二维平面上运动,尽管该材料是三维的。孟和goth因此开始了他们自己对ZrTe5材料的研究和实验。来自Technische Universität Dresden (TUD)的孟开发了理论模型,来自Max Planck固体化学物理研究所的Gooth设计了实验。用不同的技术进行七次测量总是得到相同的结论。
电子等待自己的时机
Meng 和 Gooth 的研究描绘了霍尔效应如何在三维材料中发挥作用的新图景。科学家们认为,电子沿着三维路径穿过金属,但它们的电传输仍然可以显示为二维。在拓扑金属五碲化锆中,这是可能的,因为一小部分电子仍在等待被外部磁场激活。
“电子移动的方式在我们所有的测量中都是一致的,这与二维量子霍尔效应相似。但是我们的电子是螺旋“电子移动的方式在我们所有的测量中都是一致的,类似于从二维量子霍尔效应中已知的其他方式。但我们的电子以螺旋形向上移动,而不是局限于平面中的圆周运动。这是量子霍尔效应和ZrTe5材料中所发生的情况之间的令人兴奋的区别。” “这之所以有效,是因为并非所有的电子都一直在移动。有些电子保持静止,就好像它们在排队一样。只有当施加外部磁场时,它们才会变得活跃。”
实验验证了模型
在他们的实验中,科学家们将拓扑量子材料冷却到 -271 摄氏度并施加外部磁场。然后,他们通过将电流通过样品进行电和热电测量,通过分析材料的磁性能研究了其热力学,并施加了超声波。他们甚至使用 X 射线、拉曼光谱和电子光谱来研究材料的内部运作。TUD量子设计Emmy Noether小组的负责人孟解释说:“但是我们的7次测量都没有显示电子只在二维空间运动。”孟是目前这个项目的主要理论家。“事实上,我们的模型出奇地简单,而且仍然完美地解释了所有的实验数据。”
3D 拓扑量子材料的展望
获得诺贝尔奖的量子霍尔效应于1980年被发现,它描述了电流在金属中的逐步传导。它是拓扑物理学的基石,这个领域自2005年以来经历了激增,因为它有21世纪功能材料的潜力。然而,到目前为止,仅在二维金属中观察到量子霍尔效应。本出版物的科学成果扩大了对三维材料在磁场中的行为的理解。集群成员 Meng 和 Gooth 打算进一步推动这一新的研究方向:“我们肯定希望更详细地研究 3D 金属中电子的排队行为,”Meng 说。