热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

技术装备 > 核分析技术 > 正文

矿物质受到辐射损伤后的自我修复

辐射损伤 放射性
发布:2020-09-10 10:29:46    

Xenotime晶体上的片状独居石 图片来源:马丁·斯拉玛(Martin Slama)

几种矿物质遭受放射性自我辐射,并经历了其特性的长期变化。独居石矿物的行为类似于卡门培尔奶酪,在其中钻孔:现有的辐射损伤可自行修复。维也纳大学矿物学和晶体学研究所的Lutz Nasdala领导的国际研究小组进行了离子辐照研究,揭示了独居石自我修复的原因。结果发表在《科学报告》上。

在自然界中,有很多矿物在其晶体结构中掺入了铀和钍。这会导致放射性自我辐射,在地质时期内,辐射可能会破坏晶体并将其转变为玻璃状。早在1893年,挪威矿物学家和地质学家就用“ metamict”一词来描述这种玻璃态。

自辐照矿物目前是国际研究的重点。这是因为结构性辐射损伤可能会影响矿物的物理和化学性质。了解这些性质变化的原因对于地球科学至关重要,因为确定矿物和岩石年龄的最重要技术之一是基于铀的放射性衰变。在材料科学中,放射性矿物是用于固定放射性废物的主体陶瓷的类似物。

独居石可以自愈

目前尚不清楚为什么自然界中经常发现某些矿物质(例如锆石,ZrSiO 4)处于辐射玻璃化状态,而其他物种(例如独居石,CePO 4)尽管具有更高的自辐照性,但从未变成metametate。而是始终以中等程度的辐射损坏状态进行观察。这是由于独居石结构的稳定性不足,导致无法在地质时期内累积破坏。卢茨·纳斯达拉(Lutz Nasdala)通过与奶酪进行比较来阐明这一点,并大大简化了这一过程:“使用铅笔很容易在硬的(稳定的)爱门塔尔奶酪上戳一个洞,而类似的在软卡门培尔奶酪上制造的洞会“立即治愈。”

含有两个独居石包裹体的堇青石晶体的透射光图像。从黄色缺陷着色可以看出,独居石晶粒发出的α粒子在周围的堇青石中产生了辐射损伤。独居石本身仅显示出中等程度的辐射损伤。图片来源:Lutz Nasdala

氦离子产生并治愈辐射损伤

据认为,独居石的部分自我修复不仅是由于这种矿物的低热稳定性引起的,而且还与天然α粒子的作用有关(即,由原子核中不稳定的核发出的能量丰富的氦核)。 “ alpha衰减事件”)。然而,后者与结晶独居石易于受到α辐射损害的观察结果形成鲜明对比。

在新的研究中,研究团队可以通过进行辐射实验来阐明自我修复的原因。能量为数百万电子伏特的氦离子(天然α粒子的类似物)在晶体独居石中造成结构破坏。相反,相同的氦离子会导致辐射损坏的独居石的结构恢复。因此,结晶的独居石将对应于Emmentaler奶酪,而受到辐射破坏的独居石则变为卡门培尔奶酪。

以前从未描述过如此强烈的矿物特性对结构状态微小变化的依赖性。地球科学研究的一个后果是,用合成的(即未辐射破坏的)独居石进行实验可能得出的结果不一定与这种(总是受到辐射破坏的)矿物在地球内部的行为有关。

推荐阅读

新实验帮助更好地理解基本的光致X射线过程

由欧洲XFEL的科学家领导的来自德国,瑞典,俄罗斯和美国的国际团队已发布了一项实验结果,该实验可为分析原子和分子中的跃迁状态提供一个蓝图。这将提供新的机会来深入了解重要的过程,例如光催化,光合作用的基本步骤和辐射损伤。 2020-12-23

​太阳能电池概念被用于研究核电池

韩国和美国的研究人员借用了传统上用于光伏设备的策略,以增强从β粒子产生电流的电池概念。这项工作背后的团队说,这是朝着制造用于小型设备的持久电池迈出的一步。 2020-09-30

高纯度芬兰铜可帮助科学家研究暗物质

三批在芬兰开采的,纯度为99 99%的铜板,其放射性杂质含量不到亿分之一,后来在德国轧制成板,通过陆上和海上运输到美国的粒子物理和加速器实验室Fermilab,最后冲入地下100米的仓库,可能包含探测暗物质的钥匙。 2020-11-03

北京放射性核束装置开展首次实验:发现钠20原子核存在奇异新衰变模式

近日,原子能院核物理所核天体物理创新团队依托北京放射性核束装置BRIF(Beijing Radioactive Ion-beam Facility),首次发现20Na原子核存在奇异β-γ-α衰变新模式。 2021-02-03

韩国原子能研究所使用离子束技术开发基于氮化镓的新型β电池

β电池是一种将放射性同位素发射的β射线电子转换为电能而无需外部电源(例如太阳或风)的电池。由于可以长时间使用而无需单独充电或更换,因此它适用太空,极地和深海等极端环境中和作为人体植入医疗设备的下一代电源。 2021-02-24
阅读排行榜