X射线探测,在医疗和工业领域中占有重要地位,通常依靠无机闪烁体将X射线转化为可见光子。尽管已经测试了几种量子产率荧光分子作为闪烁体,但其效率通常较低。高能辐射可以电离分子并产生二次电子和离子。结果,产生了高比例的三重态,作为闪烁损失通道。近日,浙江大学现代光学仪器国家重点实验室的杨旸、刘旭等人在Nature Materials上发文,报道发现了 X 射线诱导的三重态激子,可用于通过非常快速的热激活上转换进行发射。基于具有不同发射带的三种热激活延迟荧光分子的闪烁体,其效率显着高于传统的蒽基闪烁体。还展示了具有 16.6 线对 mm - 1 分辨率的 X 射线成像。这些结果突出了有效和迅速收集三重态激子,对有效 X 射线闪烁和辐射检测的重要性。
图 1:有机闪烁体的机理图解和分子结构。
图 2:基于 TADF 的闪烁体的高效 RL 和低自吸收。
图 3:有机闪烁体的性能特征。
图 4:基于 TADF 闪烁体的高分辨率 X 射线成像。
X射线探测和成像在医疗、安防等领域的应用非常普遍,目前的成像方式主要依赖无机材料制成的闪烁体将不可见的X光转化成可见光,比如CsI(TI)、GOS:Tb以及新型的钙钛矿半导体等,最后用成熟的硅基可见光探测技术进行成像。X射线闪烁体虽然历经百余年的发展,仍然难说有一个可以胜任所有应用场合的完美闪烁体,因此近一步拓展可用闪烁体的范围,以期在每种特定应用场合中找到合适的闪烁体具有很大的实际意义。
对于具有能带结构的半导体来说,无论是X射线还是紫外光激发,其生成的激发态的最终归宿是大致相同的,但是对于分子发光体或者一些发光中心非常局域的无机材料(如自陷态激子)而言,X射线的激发过程可能会和紫外可见的激发有巨大的差异。该研究选取了典型的有机分子发光体作为讨论对象,根据偶极子选择律(dipole selection rule),较低能量紫外可见光只会直接激发单线态激子,由于X射线能量很高,因此X射线光子会把相当多的分子电离,产生具有极高动能的电子,它们不断碰撞新的分子,同时把耗散的动能转化成二次、三次、四次…电子,直到这些热电子的能量低到无法电离下一个分子时为止,这时这些电子的能量大约是带隙的2-4倍。
最后对如何利用TADF发光机制设计高效、高速闪烁体的前景做出了展望,由于TADF机制目前多存在于有机分子体系中,其有机属性带来比较明显的缺陷就是X射线吸收截面不高,这个缺点也许可以通过将TADF分子掺杂在高X射线吸收系数的基质中得以解决,另外对于一些本身就要求低原子序数的射线探测领域,比如β和中子探测,也许TADF闪烁体可以得到更快的应用。此外TADF闪烁体中虽然有一个纳秒尺度的非常快的发光过程,但是其延迟荧光寿命目前多在百纳秒至微秒尺度,仍有进一步提升的必要和空间,这主要可以通过进一步压低ΔST提高反向系间穿越速率(RISC)来实现,有趣的是,这一点同样是实现高发光效率和低效率滚降的OLED器件的共同追求,因此基于TADF的OLED器件在不断发展的同时,也将会自然而然地提供更多更好的X射线闪烁体。