1 回弹法的基本原理
在一定的冲击能量下,弹击杆冲击混凝土表面,混凝土表面产生塑性变形消耗一部分功(混凝土强度越高,表面硬度越大,塑性变形越小),另一部分功通过混凝土的弹性变形传回给弹击杆,由动能转化为弹性势能。弹击锤向后回弹的距离L’与弹击锤脱钩前的位置L之比的百分数,即是传统意义上的回弹值。2 回弹仪对回弹值的影响
整个弹击过程中,弹击能量主要由混凝土表面的塑性变形消耗,同时还有少部分能量被弹击锤和指针移动过程中的摩擦、弹击锤克服空气阻力、混凝土构件测震颤、弹击杆在混凝土表面的的移动而消耗。正常情况下,后者在能量消耗过程中占比较小,可以忽略不计。
对弹击时产生颤动的薄壁、小型构件,弹击能量大部分将消耗到构件震颤上,回弹值显著下降,回弹检测中应尽量避开该类构件。如厚度较小的楼板回弹,应考虑到该部分降低因素。弹击过程中应在弹击杆接触混凝土表面后,缓慢施压,防止弹击过程中产生过大移动造成能量消耗。
回弹仪在长期使用过程中,弹击杆和指针会累积较多灰尘,此时摩擦消耗的能量将无法忽视。
若回弹仪疏于保养,回弹值会较大幅度降低。因此回弹仪弹击超过2000次(约12个构件)应进行一次保养。值得强调的是,不能单纯以回弹仪率定不合格作为是否保养的依据:钢砧的硬度较大,弹击返回的能量较大,摩擦的损耗占比反而较低,若因摩擦耗能导致率定值较低,实际回弹检测时,已经对结果产生了较大影响。
率定的主要作用包括:(1)检测回弹仪自身的加工精度;(2)检测回弹仪的稳定性;(3)检测回弹仪是否损耗;(4)检测冲击能量是否满足规范要求。
可以看出率定值为常规检验回弹仪工作性能的基本数据,但仍然不能忽略常规保养,以保证回弹仪处于最佳工作状态。
3 养护方法的影响因素
我国混凝土常用的养护方法主要有标准养护、自然养护以及蒸汽养护。混凝土在潮湿环境或水中养护时,由于水化作用较好,早期及后期强度比干燥条件下养护高,但表面硬度由于被水软化反而降低。
根据陕西省建筑科学研究院的相关研究,尽管蒸汽养护使混凝土早期强度增长过快,但表面硬度也随之增长,在排除混凝土表面硬度和碳化深度的影响后,蒸汽养护的回弹值与强度关系与自然养护基本一致。因此规范规定,蒸汽养护出池经自然养护7天以上,且混凝土表面为干燥状态,规范仍然适用。从另一方面讲,蒸汽养护出池后7天内,检测时间越早,回弹值越有可能偏低。实际检测中考虑该因素影响。
4 湿度的影响因素
潮湿状态导致混凝土表面含水率较大,混凝土表面硬度被软化,回弹值偏低。混凝土强度越低,潮湿状态对回弹值的削弱越大。笔者曾对某隧道C25混凝土衬砌进行比对试验,强度推定值<10MPa,而实际钻芯检测强度为30MPa左右。因此,对潮湿的地下室或隧道低强度等级构件应谨慎使用回弹法检测,现场应能保证抽湿7天表面干燥状态下进行回弹检测。仅通过抽水或局部临时表面烘干很难规避湿度对回弹值的影响。
5 碳化的影响因素
自然养护下的混凝土构件,表面氢氧化钙与空气中的二氧化碳作用,形成硬度较高的碳酸钙,此过程为混凝土的碳化。
碳化的表面混凝土硬度高于内部混凝土硬度,从而导致回弹值偏高。
规范中将碳化深度作为考虑因素修正强度推定值。大量试验表明,碳化深度大于6mm后,回弹能量的大小不会再发生显著增加,因此统一按照6mm修正。
值得注意是,碳化检测过程中容易出现假性碳化的情况,严重影响混凝土的检测精度。当使用了酸性隔离剂(如机油),或混凝土未得到较好的养护,水泥未充分水化,均会导致混凝土表面缺少氢氧化钙而不呈碱性。此时利用酚酞试剂检测碳化深度就会产生很大误差。
6 龄期的影响因素
《回弹法检测混凝土抗压强度技术规程》中规定:规范的测强曲线的适用范围为14~1000天,超过龄期范围的构件之所以无法直接使用,是因为超过了建立测强曲线所用混凝土试块的实际涵盖龄期。规范同时给出了解决该问题的准确方法,即进行钻芯修正。
GB 50292-2015《民用建筑可靠性鉴定标准》附录K同样给出了老龄混凝土回弹龄期修正方法。考虑到混凝土的老化,对不同龄期的混凝土强度值乘以小于1的修正系数。部分项目对比表明,该方法检测结果偏于保守,考虑到老龄期混凝土耐久性明显降低,适当的保守验算有利于建筑的长期使用。
7 关于非水平方向回弹的相关问题
《回弹法检测混凝土抗压强度技术规程》中仅可对非泵送混凝土进行角度修正。查阅相关文献认为:泵送混凝土流动性大,浇筑后会形成底部骨料多、上部水泥浆多的形态,因而侧面回弹较为合理。然而,随着泵送技术和外加剂的不断发展,并且有严格的离析指标控制,当下已经很难发生上述情况。
在广东省地规《回弹法检测泵送混凝土抗压技术规程》(DBJ/T 15-211-2021)的编制过程中,主编单位经过大量试验论证得出,泵送混凝土也同样适用于角度修正,这在规范中也有体现。因此,楼板构件的混凝土强度同样也可通过竖向回弹修正进行检测。
值得注意的是,广东省同样取消了浇筑面的修正系数。这是考虑到当下泵送混凝土的质量,侧面状况和底面状况并无较大差别,可不进行修正。同时,混凝土表面粗糙不平,很难进行回弹;对既有建筑而言,楼板表面的找平装修也使得浇筑面回弹难以实现。
8 回弹检测在既有建筑鉴定中应用的注意事项
老龄建筑混凝土强度检测优先采用钻芯法,无法大量钻芯情况下建议采用回弹钻芯修正法。完全无法钻芯的情况下使用《民用建筑可靠性鉴定标准》附录K中的折减系数。
既有建筑往往表面批荡抹灰,现场需要打磨至混凝土表面。普通的打磨方法无法保证混凝土表面状态良好,总会存在较多的坑洞,想规整地在每个测区内布置16个测点几乎不太可能。在不违背规范对测点距离要求的情况下,可以适当让测区内测点无序排列。测点的布置应回避混凝土坑洞、起伏不平或污渍。同时应当注意,打磨后表面灰尘如果没有清理,回弹值会整体偏低,影响检测结果。
9 总 结
作为检测混凝土抗压强度最常用的无损检测方法之一,回弹法有着无可比拟的优势。但是,回弹法又是建立在测强曲线基础上的间接方法,使得许多检测人员无法更深刻的体会回弹检测的本质,从而造成大量的误解。在回弹检测不准确的情况下,总是把原因归结于方法本身。检测人员应更多地从自身寻找原因,不断积累回弹现场经验,总结回弹影响因素,只有这样才能对自己的检测结果更加自信。