日冕作为太阳大气的最外层,由十分稀薄的、温度高达百万度甚至千万度的等离子体组成。日冕中的自由电子被附近离子的电场散射,通过自由-自由跃起损失动能并辐射光子(free-free emission),这一物理过程是日冕极紫外波段和软X射线波段辐射的主要来源,也因此可在极紫外波段和软X射线波段对日冕等离子体结构进行成像探测。
近年来,全日面日冕的探测主要来源于极紫外波段的成像观测,由空间卫星SDO的太阳大气成像仪AIA每12秒在6个极紫外波段(171、193、211、335、131、94 埃)同时进行全日面成像。而另外一台卫星Hinode的软X射线望远镜XRT每天只在几个固定的时刻对日冕进行少量的全日面软X射线波段成像。
该研究采用一种机器(深度)学习方法——人工智能卷积神经网络,统计分析配对的AIA与XRT数据,建立了由AIA 6波段观测至XRT软X射线观测的映射模型。研究表明,该模型能构造出与真实观测一致的软X射线数据,从而能够缓解当前关于日冕软X射线观测的缺失。通过该方法预测日冕软X射线观测,比传统方法利用极紫外日冕观测反演日冕微分辐射测量(DEM)再预测软X射线观测更便捷、更快、更精确。研究进一步发现,结合由该方法预测的软X-射线虚拟数据和实际观测的日冕极紫外数据,可对日冕DEM作更为精确的反演,尤其是针对具有较高温度等离子体(五百万度以上)的日冕特征。未来,由机器学习虚拟的多波段观测可能为某些具体的太阳物理分析(如日冕结构热分布)提供数据辅助。
该研究获得了国家自然科学基金重点项目和面上项目、中科院太阳活动重点实验室,以及科技部重大项目的支持。