热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

高压电缆阻水缓冲层烧蚀缺陷的射线检测

2021-01-29 09:40          射线检测 电线电缆 无损检测

2020年某110kV电缆线路B相发生故障,其型号为ZC-YJLW03-Z-64/110-1×630 mm2,线路长度约为3.2km,至今已运行约7年。故障电缆现场开断及解剖后,发现其电缆本体绝缘外屏蔽层和阻水缓冲层有不连续的烧蚀痕迹,故障电缆阻水缓冲层烧蚀形貌如下图所示。

图1 故障电缆阻水缓冲层烧蚀形貌

高压电缆的阻水缓冲层烧蚀缺陷会使电缆本体在运行过程中发生随机性绝缘击穿,导致线路停运,其引发的故障多,危害大,是影响电网安全稳定运行的重大隐患,并长期困扰电缆行业。据不完全统计,近20年来国内因阻水缓冲层烧蚀导致的缺陷不下30次,其中一小部分是通过电缆线路的停电切接发现的,其余均是对绝缘击穿故障案例进行解剖发现的。更为重要的是阻水缓冲层烧蚀的产生原因还不清楚,相关标准对原材料的要求不够明确,也缺乏有效的检测监督手段。

针对阻水缓冲层烧蚀,国网湖南省电力有限公司电力科学研究院的检测人员在行业内首次利用数字射线技术对该110kV电缆线路进行带电检测评估,摸索现场快速无损检测方法,为该线路的后续处理提供技术支持。

1 现场检测工艺及测点布置

现场检测用的便携式X射线机管电压调节范围为10~225kV,有效焦点尺寸为3mm。

电缆本体中存在导体铜芯线、铝护套、交联聚氯乙烯(XLPE)绝缘层、聚酯纤维非织造布等不同材料,其端面结构如图2所示。其密度从铜的8.89g·mm-3到交联聚乙烯的0.93g·mm-3,各物质的射线吸收系数相差很大,因此平板探测器A/D转换位数选择为14bit。

图2 电缆端面结构示意

经现场试验,选择X射线检测的管电压为75kV,管电流为0.6mA,焦距为600mm。在现场检测过程中,由于摆放机位空间的限制,焦距在500~650mm之间变动,管电压在60~80kV之间调整,射线机窗口基本沿电缆中线斜向上30°。

该110kV电缆线路长3.2km,共分为4段,每段长度约800m。按照每相每100m设立一个检测点预计,每一相段共检测8个点,预计共96个检测点。现场检测中发现,该线路第4段为直埋段,只有一个电缆井具备检测条件,故该段三相只能检测1点。

2 检测结果与分析讨论

按照设定的检测工艺进行检测,射线透照图像中可以清楚地区分电缆中的铜芯线、主绝缘及铝护套,其中图中间圆柱体均匀区域为铜芯线,铜芯线外侧部分为主绝缘,二者中间的导体屏蔽层在图像中无法显示。主绝缘为圆筒形,其外层在透照图中显示为一条直线。白色的波纹为铝护套,铝护套与主绝缘间含有绝缘屏蔽层和阻水缓冲层,其在透照图像中不可见。高压电缆射线透照图像如图3所示。

 
图3 高压电缆射线透照图像

典型白色缺陷透照图像如图4所示。部分透照图像中可见白色缺陷影像。从图4中各白色缺陷影像的显示位置来看,其存在以下特征:

一是白色缺陷影像均在白色铝套管内,且大体靠近套管的波谷位置。

二是缺陷影像均在图像的下部分出现,按照射线机的摆位,该部位处于电缆的底部,即靠近电缆支架的位置。

 

图4 典型白色缺陷透照图像

该电缆线路ABC三相一共检测了75个测点,一共发现该类型缺陷21处,占总测点的28%。其中A相缺陷5处,B相缺陷9处,C相缺陷7处,分别占各相检测总量的20%,36%和28%。具体的缺陷位置示意如图5所示。由此可见该电缆B相的缺陷最多,问题最为严重。

 

图5 电缆线路ABC三相缺陷检出位置示意

该电缆线路的现场带电射线透照图像可清晰显示电缆的铜芯线、主绝缘和铝护套。从实验室的缺陷电缆实物和射线透照图像对比来看,采用X射线检测技术能很好地检测出阻水缓冲层烧蚀缺陷。实验室除去铝护套的带缺陷的电缆实物如图6(a)所示,其在相同检测工艺下,套上铝护套进行射线透照,透照图像如图6(b)所示。现场部分透照图像显示出的白色缺陷影像可以认为是该线路电缆本体的阻水缓冲层烧蚀缺陷,证明了该工艺条件下的X射线检测技术能有效地检测出电缆本体的同类型缺陷。

 
 

图6 实验室带缺陷的电缆实物与其射线透照图像

进一步分析该线路透照图像中白色缺陷影像显示的位置规律,发现其均在靠近电缆下部的波谷处,即该缺陷多发于电缆底部铝护套波谷处,这与阻水缓冲层烧蚀缺陷形成的原因有关。由于阻水缓冲层中的阻水粉(聚丙烯酸钠)呈碱性,在阻水带吸潮后会发生电化学反应,形成密度比阻水缓冲层高的碳酸钠、碳酸氢钠及氧化铝。与电缆顶部相比,电缆底部的铝护套承力较大,其波谷处阻水缓冲层与两侧的铝和绝缘屏蔽层密切接触,一旦阻水带吸潮,该部位最容易发生反应。

经过现场的带电无损检测,发现该线路电缆本体的阻水缓冲层烧蚀严重,尤其以B相的缺陷最为突出,正是该质量状况导致了B相近期出现的绝缘击穿事故。从电缆运行安全和可靠性方面考虑,该线路电缆应尽快进行更换。

结论

高压电缆阻水缓冲层烧蚀缺陷是长期影响电网安全稳定运行的重大隐患。通过对某110kV电缆实施带电X射线检测,共检测出21处电缆本体存在的阻水缓冲层烧蚀缺陷,且均处于电缆底部的铝护套波谷处。缺陷检出点占所有检测点的28%,其中B相的缺陷检出点占该相检测点的36%,情况最为严重。表明射线检测技术可在带电情况下有效地检测出电缆本体阻水缓冲层的烧蚀缺陷,保障电网的安全稳定运行,有较好的工程应用推广价值。



推荐阅读

上海石化首次使用无损检测机器人为管道做“肠镜”

近日,无损内壁检测机器人现身上海石化,为炼油部焦化装置大油气管线做了首次管道“肠镜”检查。 2021-06-18

第十六届全国无损检测新技术交流会通知(第五轮)

为交流无损检测新技术领域的研究进展,加强无损检测工作者的联系与合作,第十六届全国无损检测新技术交流会将于2021年7月在哈尔滨举行。 2021-06-17

飞机液压导管裂纹的超声表面波检测

飞机液压导管在服役过程中受到制造工艺或装配等多种因素影响,其端头的应力集中处容易萌生疲劳裂纹,随着服役时间的增加,疲劳裂纹扩展后将导致液压系统压力降低,严重时则会使液压导管断裂失效,产生灾难性后果。目前,针对上述情况采取的预防措施为定期更换导管,但是这种方法费时又费力,并且有可能误将正常工作的导管也更换下来。为了确保飞行安全,亟需寻求一种可靠的在役检测方法对导管实施在线监控,尽早发现导管中的裂纹,减少其在服役过程中的成本。 2021-06-16

焊缝的X射线检测图像如何区别不同缺陷

焊缝的内部缺陷通常会使用无损检测方法进行辨别,X射线是最常用于焊缝缺陷检测的无损检测技术手段。X射线能够穿透金属件,由于缺陷位置与正常部位金属的密度不同,所以在X-Ray检测设备上所呈现的图像明暗对比不同。焊缝不同缺陷的X射线检测图像存在以下差异。 2021-06-11

揭秘无损检测行业的“尖子生”-TOFD无损技术

随着全国首个跨江斜拉桥RBPC钢桥面铺装重置工程的顺利完工,其技术上的创新突破引起多方关注,尤其是TOFD无损技术在桥梁日常养护检测和重置工程中的出色表现受到业内一直好评。 2021-06-06

阅读排行榜