托马斯Kläpotke关于叠氮酸说道,“这是一个讨厌的化合物,”它是一种含有98%的氮,有剧毒且非常易爆的液体。他的团队来自德国慕尼黑路德维希-马克西米利安大学,现在首次使用同步加速器X射线辐射在低温下解决了酸的结构。
叠氮酸提出了重大的处理挑战。它是一种挥发性液体,沸点为36°C,剧毒且极易吸湿,但这被其吸热特性所掩盖。
Kläpotke和他的团队早在2011年就记录了HN3的单晶X射线结构,仅提供了有限的信息,因此他们渴望使用同步加速器辐射获得更高质量的粉末结构。该小组在处理爆炸性材料,尤其是氮含量很高的爆炸性材料方面拥有丰富的经验。
现在,该小组在德国汉堡的Desy进行的同步加速器实验详细揭示了假四方层如何形成叠氮酸,每层中的分子通过弱氢键保持在一起。这些被堆叠在一起,由范德华力保持。
毫无疑问,制备样品是一项棘手的练习。他说:“我们设计了一个封闭的玻璃系统,该系统由一个与X射线毛细管相连的小玻璃灯泡组成。” 我们在玻璃灯泡中装入了硬脂酸和叠氮化钠(两种易于处理且无害的固体)。然后,我们将整个设备抽空并火焰密封,然后在油浴中将其加热到约100°C。硬脂酸熔化并与叠氮化钠反应,得到固体硬脂酸钠和易挥发的HN3。
他们用液氮冷却毛细管,该液氮冷凝灯泡中的酸,并在液氮中进行火焰密封。该过程不是第一次成功-Kläpotke说,当他们试图密封毛细管时,它爆炸了好几次。他解释说:“但是毛细管中只有毫克,如果操作员戴上安全防护帽和手套,会使他们有些恐惧,但是没有危险。”
资料来源:©ThomasKlapötke 硬脂酸与叠氮化钠在100°C的反应中产生了氢氰酸,被捕获在右侧的液氮冷却毛细管中
然后将薄的玻璃毛细管加热到室温,并向北超过400英里(650公里)到Desy同步加速器设施。在那里,将其再次缓慢冷却以结晶出hydr酸。
克拉珀特克说,与他的大部分工作不同,这项研究纯粹是学术性的。他说:“氢氰酸是最简单的叠氮化物,氮含量几乎达到98%。” ``这与我们大部分与军事爆炸物有关的工作无关。任何人都无法大规模使用它,这太敏感了。”
英国拉夫堡大学的Paul Kelly曾在高能无机化学领域拥有丰富的经验,他说,像这样的瞬态或不稳定分子的研究可以为键合提供基本的见识。他说,尽管氢偶氮酸已经有一个多世纪的历史了,仅包含四个原子,但我们仍然对其特性缺乏全面的了解。这项工作表明,有了正确的经验,并给予应有的关注和关注,您就可以运用真正的前沿技术,而无论分子有多危险。
Klapötke说,该方法将可以研究其他具有挑战性的材料的晶体。他们已经开始研究卤素叠氮化物,并且将来希望研究其他易爆的挥发性叠氮化物。