热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

高性能光学腔:太赫兹波能在这里面反弹3000次!

2020-10-30 09:18          太赫兹波 高性能光学腔 核分析技术

一项新研究进展增加使用太赫兹波长进行化学分析的高分辨率光谱仪的灵敏度,这种较高的灵敏度可以使许多应用受益,例如分析工业排放物中发现的复杂气体混合物,以及检测患者呼吸中的疾病生物标志物,它还可能促使通过气体检测来检测食品腐败的新方法。在光学学会(OSA)高影响力研究期刊《Optica》中,由法国欧佩尔大学Gaël Mouret领导的研究人员,报道了一种新用于太赫兹频率的高性能光学腔。

使用这种腔演示了第一个令人信服,太赫兹频率下的腔增强光谱学。太赫兹频率介于电磁波光谱上的微波和红外光波之间,对于光谱气体分析,太赫兹频率提高了区分样品中分子和检测各种分子的能力,然而充分利用这些频率所需的技术仍在开发中。有几项研究已经使用太赫兹频率来分析排放到大气中的工业气体,但它们都因缺乏敏感性而受到阻碍。而新光腔将扩大可以用太赫兹气相光谱学识别的分子类型,并提高可行的检测水平。

提高灵敏度

研究人员使用最新可用的组件来构建一个高精确度太赫兹光腔,一组镜子和一个限制光多次反射的波导。高精细光学腔表现出非常低的光损耗,因此能让光在离开腔之前在镜子之间反弹更多次。新部件包括一个低损耗的圆形波纹波导和两个特别设计的高反射光子反射镜,可以在太赫兹频率下很好地工作。对于腔增强光谱,气体混合物被放置在光学腔中,在那里它与里面的光相互作用,新腔体允许太赫兹波在退出前来回反弹约3000次。

这意味着在一个只有50厘米长的谐振器内,被分析的分子在大约一公里的有效距离上与太赫兹频率相互作用。当波在周围反弹时,它们可以被存在的任何分子多次吸收,从而可以进行非常灵敏的测量。具有这种技巧的腔体以前在太赫兹频率下是不可用的,这一进步使太赫兹频率可以应用于许多已经在红外中使用的高灵敏度技术。为了用新设备演示气体的空腔增强光谱,研究人员分析了羰基硫化物气体的样本,这是在大气中自然发现的。

检测稀有分子

虽然气体样品含有许多羰基硫化物的同位素,但研究人员能够测量出一种非常稀有的同位素,其浓度仅为每50000个分子中有一个分子存在。测量样品中不同化学同位素的比率可用于确定污染物来源。研究人员计划扩大光谱仪的频率范围,以便它可以用于分析更复杂的分子和混合物。研究表明,现在可以很容易地建造高精细太赫兹空腔,并使用它们来测量高分辨率的气体,这可能有助于改善对从环境和工业污染到医药等应用中存在大量低含量气体的监测。



推荐阅读

ALICE发现在大型强子对撞机中粲强子化有所不同

由ALICE合作进行的新测量显示,在质子-质子碰撞中,粲夸克形成强子的方式与基于电子对撞机测量的预期大相径庭。 2021-06-11

破裂物理研究获进展

近日,中国科学院合肥物质科学研究院等离子体物理研究所EAST团队等离子体破裂物理课题组在破裂物理、逃逸电子和破裂预测等方面取得了系列新进展。相关研究成果发表在Nuclear Fusion、Plasma Physics and Controlled Fusion等上。 2021-06-10

中子衍射研究:一种新的自旋结构及巨压磁效应

中国科学院物理研究所 北京凝聚态物理国家研究中心磁学国家重点实验室M03组团队,在Fe掺杂的MnNiGe合金中,利用中子衍射手段,首次解析出了无公度圆锥螺旋磁结构,并利用此磁结构关联的晶格畸变和织构效应获得了巨大负热膨胀 2021-06-10

近代物理所研究者指出近年报道的首例电子俘获核激发现象或被高估

近日,中国科学院近代物理研究所的科研人员发现,美国科学家发现的首例电子俘获核激发(NEEC)现象,因受复杂γ(伽马)本底影响,测量的激发几率可能被显著高估。该研究推荐利用次级束流装置在低γ本底环境下获得更可靠的实验结果。相关研究于6月2日发表在《Nature》的“Matters Arising”栏目上。 2021-06-08

中国散裂中子源初期核数据实验结果引人注目

中国散裂中子源(CSNS)是国家大型科学实验装置,于2018年建成。CSNS的反角白光中子实验装置(或反角白光中子源,简称Back-n)是一台高性能白光中子源,其综合性能处于国际同类装置的前列,尤其是其距中子产生靶等距离的中子流强是国际上最高的,覆盖能区范围和中子飞行时间测量的分辨率也具有很强的竞争力。 2021-06-05

阅读排行榜