2025年3月27日发布的2024年度“中国科学十大进展”中,进展9,“高能量转化效率锕系辐射光伏微核电池的创制” 主要完成单位为苏州大学、西北核技术研究所和湘潭大学,主要完成人为王殳凹、王亚星和欧阳晓平。
微型核电池是将放射性同位素衰变能转换为电能的装置,得益于放射性同位素衰变不受外界环境影响的特性,微型核电池在诸多传统电池难以胜任或面临挑战的应用场景中,成为了一种持久且不可或缺的能源解决方案。
在我国核能快速发展的背景下,伴随而来的大量核废料中含有半衰期长达数千年到百万年的锕系核素,长期被视为环境负担。
锕系核素因其长半衰期和高衰变能,成为该类电池的理想“燃料”。锕系核素尤其是超铀核素如241Am/243Am是核废料中长期放射毒性的主要贡献者,其超长的半衰期和高达兆电子伏特的α(alpha)衰变能促使研究人员探索开发锕系微型能源的可能性。然而,传统的微型核电池设计中严重的自吸收阻碍了锕系核素衰变能的高效转换。
苏州大学王殳凹、王亚星和西北核技术研究所/湘潭大学欧阳晓平等提出了一种基于“聚结型能量转换器”的锕系微型核电池架构,实现了锕系核素与能量转换单元的分子级耦合,大幅削减了自吸收效应,使衰变能转化效率提升了8000倍。
研究团队从射线与物质相互作用的本质出发,提出了一种基于“内置能量转换器”的锕系微型核电池架构,通过将锕系核素243Am掺杂到发光镧系(Tb3+)元素配位聚合物中,且它们之间的距离处于埃米范围之内,实现了放射性核素与能量转换单元的分子层级耦合。
243Am衰变产生的α粒子能量可极为高效地沉积到周围的镧系元素上,继而产生显著的辐射发光现象。在仅使用11 μCi放射性核素用量的情况下,研究团队观测到了内置能量转换器中243Am内辐照诱导的肉眼可见的自发光。
在仅使用不到10 μCi 243Am的情况下,观测到了内置能量转换器中锕系核素内辐照诱导的自发光现象。进一步研究表明,从衰变能到自发光的能量转化效率比传统结构提高了近8000倍。
该成果作为近几十年来核电池领域的重要突破之一,为锕系核素在非核燃料循环领域的资源化利用打开了新的方向。
该研究为高效微型核电池开发提供了理论基础,也为放射性废物的高值资源化利用提供了新思路。相关研究结果于2024年9月18日发表于《Nature》。