热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

圣彼得堡国立大学的物理学家研究了一种有前途的钙钛矿半导体的发光

2024-11-08 09:17     来源:裸体科学     钙钛矿半导体 电子束照射 晶体光子学实验室 核技术核物理

圣彼得堡国立大学的科学家们已经确定了半导体(卤化物钙钛矿 MAPbCl3)受到电子束照射时产生的辉光的性质。科学家的一个意外发现是,当样品受到电子照射时,发光颜色可能会改变。

事实证明,发光的颜色可以在强度不降低的情况下发生变化,这表明卤化物钙钛矿缺陷的结构已重组为稳定的形式。这种调谐可用于微调卤化物钙钛矿成品,例如 LED。

该钙钛矿是在圣彼得堡国立大学晶体光子学实验室合成的,该实验室是在俄罗斯科学和高等教育部巨额资助计划的框架内创建的。该研究结果发表在《物理化学快报》杂志上。

LED 灯泡中常见的白光可以通过将黄橙色磷光体应用到发射紫外光或蓝光的微型半导体晶体上来获得。因此,任何 LED 灯的“心脏”都有一个半导体。

通常,此类半导体的制造过程非常昂贵,需要纯净的原材料和高温制造。大约十年前,世界各地开始研究新型半导体——卤化物钙钛矿。因此,钙钛矿晶体的生产比“经典”类似物便宜得多,因为它们是从溶液中生长的。

其中一种卤化物钙钛矿是 MAPbCl3,它是氯、铅和小有机阳离子甲基铵的杂化化合物。这种钙钛矿晶体是透明的,如果给它们能量,它们就会在蓝色和近紫外范围内发光。

为了研究宽带隙半导体,需要在配备光学光谱仪的电子显微镜中用电子束照射所研究的晶体。入射电子的能量转化为晶体的激发,晶体开始发光,即发生发光。

半导体在室温下发光,但将晶体冷却到低温有助于了解晶体中发生的过程及其发光过程的机制。圣彼得堡国立大学晶体光子学实验室的科学家合成了MAPbCl3晶体,并研究了其在液氮温度(-196℃)下的阴极发光。

其中一个光谱带是晶体表面上的外来杂质发出的光。其余的属于钙钛矿本身。科学家发现,其中一个带是激子(存在于半导体中的“人造原子”)的辉光,第二个带与晶体缺陷有关。正如科学家指出的那样,通常,有缺陷的半导体不会发光,必须付出巨大的努力才能获得足够纯度和质量的发光晶体。然而,卤化物钙钛矿本身的缺陷能够发出明亮的蓝光。

该研究是在俄罗斯科学和高等教育部巨额拨款框架内创建的圣彼得堡国立大学晶体光子学实验室进行的,使用了圣彼得堡国立大学纳米技术资源的设备圣彼得堡国立大学科技园中心。



推荐阅读

福建物构所锰基有机金属卤素杂化闪烁体研究取得进展

X射线探测技术在疾病诊断、异物检测等领域具有重要作用。闪烁体作为X射线探测技术的核心器件,是一类可以将高能辐射如X/γ射线、α/β粒子、中子转化为可见光或近可见光的材料。而高效闪烁体需要具有高产光率、高能量分辨率、快速响应时间、灵敏的电离检测以及出色的机械和化学稳定性。面向这一需求,中国科学院福建物质结构研究所郭国聪与郑发鲲团队在锰基有机金属卤素杂化闪烁体研究方面取得了进展。锰基有机金属卤素... 2024-11-13

物理学家首次捕获分子“电子冰”

科学家们很长一段时间无法获得分子电子冰的图像,因为所使用的技术破坏了研究对象。证明电子晶体存在的同一小组提出了一种修改扫描电子显微镜的方法,并获得了维格纳分子的第一张图像。电子通常在材料中移动得非常快,以至于它们不会与任何东西形成键。 20 世纪 30 年代,物理学家尤金·维格纳 (Eugene Wigner) 预测,电子可以在低密度和低温度下静止,形成电子冰,又称维格纳晶体。2021年,在美国伯克利,王峰和迈克尔·克罗米领导的研究小组证明了... 2024-11-13

日本核聚变产业化迎来关键一步,示范聚变电厂项目FAST启动

11月12日,日本宣布聚变能源示范电厂项目FAST(Fusion by Advanced Superconducting Tokamak)正式启动,预计将在2025年完成初步设计,2030年代末进行发电示范。 2024-11-13

国际领先!又一件“大国重器”为大型核电水电保驾护航

近日,由中国机械工业联合会组织的国家级科技成果 环保型发电机快速断路器关键技术研究鉴定会在西安召开。鉴定委员会一致对西安交大电力开关技术及装备研究团队研制的ZHN□-31.5 210kA环保型发电机快速断路器成套装置新产品的创新性和先进性给予了高度评价,一致同意科技成果和新产品技术通过鉴定——处于国际领先水平。本装置由西安交通大学、西安高压电器研究院股份有限公司与西安西电开关电气有限公司联合研发,为世界首台环保型发电... 2024-11-12

量子涡旋证实了超固体的超流性

超硬材料是违背逻辑和预期的材料。乍一看,超固体由于其刚性的晶体结构而似乎是一种经典的固体,但它也具有液体特性,包括超流动性,使其能够无摩擦地流动。这种看似相反的性质的共存早已被理论化,但直到最近,对这些性质的实验确认仍然是一项艰巨的任务。然而,最近的一项科学突破表明超固体中存在量子涡旋,证实了其表现得像超流体的能力。这一发现开辟了材料物理学的新视角,并可能具有革命性的应用。超固体是一种不遵守经典物理定律的物质状态。... 2024-11-12

阅读排行榜