热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

天问一号火星能量粒子分析仪首个科学成果发布

2022-08-08 10:20     来源:中科院近代物理研究所     粒子物理
近期,中国科学院近代物理研究所同国内外多家单位合作者组成的研究团队利用天问一号火星能量粒子分析仪获得了首个科学成果,研究讨论了基于该载荷在地火转移轨道中观测到的一个太阳高能粒子事件。相关结果于7月26日发表在国际权威期刊《天体物理学杂志快报》(The Astrophysical Journal Letters)上,并被美国天文学会(AAS)选为亮点工作,以“Caught in a Solar Storm on the Way to Mars”为题进行了专题报道。

火星能量粒子分析仪是我国首个用于研究行星际和近火星空间辐射环境的载荷,由近代物理所和兰州空间技术物理研究所联合研制,于2020年7月搭载在天问一号火星探测器上发射升空,正式开启了探测任务。

2020年11月29日,火星能量粒子分析仪在地火转移轨道距太阳1.39天文单位(au)处,观测到第25个太阳活动周期的首个大型径向分布的太阳高能粒子事件。事件发生时,天问一号与地球近似处于同一根磁力线上,这使得天问一号和地球附近航天器能够在相隔数千万公里的地方观测到来自相同源区的太阳高能粒子,为研究太阳高能粒子沿磁力线在行星际空间的传播提供了一个宝贵的机会。

理解太阳高能粒子的加速与传播机制一直是空间物理和空间天气研究的重要课题之一。一旦离开近地环境进入太空、失去地球磁场的保护,宇航员及航天器就必然暴露在强烈的高能粒子辐射之中。与通量长期稳定的银河宇宙线不同,太阳高能粒子事件在任何一个太阳活动周期内具有偶发、不可预测的特性。该事件爆发时产生的能量粒子通常起源于太阳耀斑爆发和日冕物质抛射驱动的激波加速过程,其通量高于背景宇宙线达几个数量级,不仅对行星际和近地空间辐射环境带来巨大影响,也对载人航天和深空探测等空间任务构成巨大威胁。

近代物理所科研人员在获得回传的数据资料后,对火星能量粒子分析仪的工况进行了检查,确认其在轨工作状态良好。研究人员构建了仿真软件,使用模拟数据对回传的抽样原始数据刻度计算结果进行比较验证,得到了火星能量粒子分析仪对不同种类入射粒子的几何因子;同时,梳理了抽样原始数据与观测在轨能谱的关系,建立了一套完整的数据分析处理方法,确保了科学探测数据质量的可靠性。

以高质量的质子通量数据为基础,近代物理所科研人员与澳门科技大学、中国地质大学、兰州空间技术物理研究所、中国科学技术大学、美国阿拉巴马大学亨茨维尔分校和中科院国家空间科学中心研究人员合作,结合地球附近航天器的观测数据,围绕此次太阳高能粒子事件开展了能量粒子的加速和传播机制的物理研究。

通过比较火星能量粒子分析仪与近地航天器的质子通量数据,研究团队发现天问一号和地球附近航天器关联的磁力线并没有连接到太阳表面的爆发源区和行星际激波,这意味着高能粒子必须跨越磁力线才能到达天问一号和地球附近航天器。另外,研究团队还发现两个位置处观测到的质子能谱形状非常相似,均表现为双幂律谱,并且它们的质子强度时间曲线在太阳高能粒子事件衰减阶段也有着相似的演化趋势,呈现出典型的蓄水池现象。研究团队认为,双幂律能谱很可能是在激波加速源区产生,而传播过程中的垂直扩散效应是解释该事件中蓄水池现象的关键因素。此外,研究团队还讨论了太阳高能粒子事件峰值强度的径向相关性和磁力线长度相关性等。

在此次太阳高能粒子事件中,火星能量粒子分析仪与近地航天器观测数据具有非常好的一致性,这表明火星能量粒子分析仪仪器功能与性能均符合设计预期,仪器测得的数据质量可靠,为后续环火星探测数据的研究奠定了良好基础,有望帮助人们更好地了解火星辐射环境以及规划深空探测任务。

图1:天问一号搭载的火星能量粒子分析仪观测到的太阳高能粒子事件事件关联谱。(图/张永杰)

图2:事件爆发时天问一号(灰色点)、火星(红点)、地球(蓝点)以及其它航天器的相对位置。(图源/《天体物理学杂志快报》)

图3: SOHO卫星和火星能量粒子分析仪在相近能道上观测到质子时间强度曲线的对比。(图源/《天体物理学杂志快报》)



推荐阅读

粒子物理学停滞不前的噩梦该怎样打破?

十年前,粒子物理学家让整个世界为之振奋。欧洲核子研究组织(CERN)的大型强子对撞机(LHC)是世界最大的粒子加速器。2012年7月4日,在这里工作的6000多名研究人员宣布,他们发现了希格斯(Higgs)玻色子的踪迹。这是一种质量极高、寿命极短的粒子,是解释其他基本粒子如何获得它们质量的关键。 2022-08-10

可延长电子自旋的寿命,还能保存量子信息的方法

电子是基本粒子之一,是其他系统的基石,电子具有特定的性质,如自旋或角动量,可以被操纵来携带信息,从而为推动现代信息技术的发展做准备。 2022-08-10

可控核聚变前沿探索:原子能院在激光驱动磁化“开尔文-亥姆霍兹”不稳定性研究中取得进展

近年来,随着强激光以及诊断技术的不断发展,其逐渐成为开展磁化KHI研究的重要手段。激光驱动的磁化KHI研究在惯性约束聚变、空间物理和天体物理等领域具有重要意义。研究团队提出了一种通过激光驱动等离子体产生KHI的实验方案,通过辐射磁流体力学程序对激光驱动的调制靶产生的KHI进行了二维数值模拟,充分研究了外加磁场对多模扰动KHI涡旋演化的影响。 2022-08-09

俄罗斯正在建造一个能干扰卫星的地基激光设施

激光是一种创造定向能量窄光束的装置。第一台激光器是在1960年开发的。从那时起,已经有几种类型被创造出来,它们使用不同的物理机制来产生光子或光的粒子。 2022-08-08

海洋大气新粒子生成机制研究获进展

海洋气溶胶是全球大气气溶胶的重要组成部分,也是当前制约气候模型预测准确性的主要因素之一。海洋大气气溶胶主要通过飞沫(sea spray aerosol,SSA)和新粒子生成(new particle formation,NPF)两种途径产生,后者是海洋排放的活性反应气体通过反应成核(nucleation)和增长(growth)过程产生。 2022-08-05

阅读排行榜